Video Instructions if Interested

· https://youtu.be/2KJuI4YnTGU

Crash Course: N1 - Honors Chem Review

How to set up your composition notebook Your notebook should look like this so far...

Page 1 Page 2 Page 3

Add the N1 "Glue In" to page 3

Now your notebook should look like this!

Page 1 Page 2 Page 3

You MUST remember your Honors Chem material !!! It is SO important. You need to know it AND be able to do it FAST !

Time for some self guided review !

- The rest of this PowerPoint has screen shots of key pieces of info from the Honors Chem Lectures. Your glue in has links to the full Honors Lectures if you want/need more detail.
- **PLEASE** scroll through and review things as needed!
- When we start a new AP Chem chapter, **PLEASE** go back and review the Honors version of the chapter!
- I cannot stress enough how important this is!
- Make mature choices about what and when to review old material! **Set yourself up for success!**

Unit #1 Chemistry Basics and Atomic Structure

- •Scientific notation
- •Metric system
- •Dimensional analysis
- •Significant figures
- •Chemical/Physical properties/changes
- •Types of matter
- •Atomic numbers and Isotopes
- •Models of the atom
- •Average Atomic Mass Calculations

Jump back to title slide

Tired of really big or really small numbers??? " x 10 EXPONENT"

- Use scientific notation!
- Move your decimal and rewrite it in "scientific notation format"

$$
3 \bullet 54 \times 10^2
$$

(telling how many times to move the decimal, and which way to move it!)

Exponent

 $3.54E²$

is the same a

[Jump back to](#page-1-0) title slide

Converting Metric System

• Just move the decimal!

Metric System

[Jump back to](#page-1-0) title slide

<u>How do I remember the prefixes?</u>

Derived Units

Jump back to title slide

Derived Units

 $\rm cm^3$

- Made by combining multiple units together
- Examples:

miles/hour = speed in our cars in US

- $=$ volume
- $m/s²$ = acceleration
- $kg\cdot m/s^2$ = newton (measures force)

Jump back to title slide

[Jump back to](#page-1-0) title slide

Remember - Canceling Units

One on top cancels with one on the bottom

 $\frac{15 \text{ cm}^3}{5 \text{ cm}} = 3 \text{ cm}^2$

[Jump back to](#page-1-0)

title slide

Conversion Factors

You can flip conversion factors too $12in = 1ft$ 24hrs = 1,440min

Just depends on what you are doing

Keeps work neat, tidy, takes less space, easier to
grade, a very typical way to show conversions in
chemistry. I will always use the line method!

[Jump back to](#page-1-0) title slide

Convert 15 years into minutes

$$
15yrs \times \frac{365 \text{days}}{1 \text{ yr}} \times \frac{24 \text{hrs}}{1 \text{ day}} \times \frac{60 \text{min}}{1 \text{hr}} = 7.9 \times 106 \text{min}
$$
\n
$$
15 \text{ yrs} \times \frac{365 \text{ days}}{1 \text{ yr}} \times 24 \text{ hr} \times 60 \text{ min} = 7.9 \times 10^6 \text{ min}
$$
\n
$$
1 \text{ yr} \times \frac{1 \text{ day}}{1 \text{ hr}} \times 10^6 \text{ min}
$$

[Jump back to](#page-1-0) title slide

Dimensional Analysis with "Derived/Double Units"

Some units are combinations of two or more other units. Like miles per hour (mi/hr). Fix the top unit, then go back and fix the bottom unit Convert 20mi/hr into in/sec.

$$
\frac{20 \text{ m/s}}{1 \text{ m/s}} = 352 \frac{\text{in}}{\text{sec}}
$$
\n
$$
\frac{1 \text{ m/s}}{1 \text{ m/s}} = 352 \frac{\text{in}}{\text{sec}}
$$

Significant Figures

[Jump back to](#page-1-0) title slide

0.0486 has **Leading NEVER COUNT as SIGNIFICANT 3 sig figs Zeros**

Significant Figures

[Jump back to](#page-1-0) title slide

Significant Figures

[Jump back to](#page-1-0) title slide

Properties and **Changes**

Jump back to title slide

Physical and Chemical Properties

PHYSICAL PROPERTY

- a property that a substance displays without changing its composition.
	- -Odor, taste, color, appearance, melting point, boiling point, and density

CHEMICAL PROPERTY

a property that a substance displays only by changing its composition via a chemical change/rxn

- Corrosiveness, acidity, and toxicity.

Properties and Changes

[Jump back to](#page-1-0) title slide

Physical Change

- Alter only the state or appearance, but not composition
- The atoms or molecules that compose a substance do not change their identity during a physical change.

Chemical Change

- Alters the composition/identity of the substance
- Atoms rearrange, transforming the original substances into different substances.

Types of Matter

[Jump back to](#page-1-0) title slide

The Classification of Matter by Components

• Elements, compounds, and types of

Atom

RALL MODEL

John Dalton

THOMSON'S ATOMIC MODEL

Thomson believed that the electrons were like plums embedded in a positively charged "pudding," thus it was called the "plum pudding" model. We don't usually eat plum pudding in this country, so I like to call it the chocolate chip cookie model.

RUTHERFORD'S FINDINGS

- Most of the particles passed right through $\overline{1}$
- $2)$ A few particles were deflected
- $3)$ A FEW were greatly deflected

CONCLUSIONS:

 \Box The nucleus is small The nucleus is dense ❏. \Box The nucleus is positively charged \blacksquare The atom is mostly empty space

THE BOHR MODEL

The "planet" model because it looks like the planets revolving around the sun. These Electrons have "paths" that they follow around the Nucleus in the center. Usually we DRAW atoms like this but its not accurate!

The Quantum Model

This is a hard model to understand. The Electrons don't follow paths, they are not objects at all! Instead they are pure charge that has a probability of being somewhere in those orbitals.

Atomic Numbers

[Jump back to](#page-1-0) title slide

ATOMIC NUMBERS

We know: Nucleus has protons (p^+), neutrons (n⁰), and electrons(e⁻) are on the outside of nucleus

But how many of each???

Average Mass Calcs.

[Jump back to](#page-1-0) title slide

CALCULATING AVERAGE MASS

$$
Avg. Mass =
$$
\n
$$
\left(\begin{array}{c}\n(Mass_{Isotope1} \times \frac{9}{6}abundance1) \\
+(Mass_{Isotope2} \times \frac{9}{6}abundance2) \\
+(Mass_{Isotope3} \times \frac{9}{6}abundance3)\n\end{array}\right)
$$
\netc...

Average Mass Calcs.

[Jump back to](#page-1-0) title slide

FINDING % ABUNDANCE

Same equation, just solving for a different variable!

We can use (x) to represent the $\%$ _{abundance} We can use $(1-x)$ to represent the $\%$ _{abundance}?

BECAUSE:

The total has to add up to 100% right?! 100% is the same as 1 to make the math faster

Unit #2 Nuclear Chemistry

- •Why things are radioactive
- •Types of radioactive particles
- •Writing and balancing nuclear equations
- •Decay series

•Half Life

Nuclear Chemistry <u>What keeps nuclei together?</u>

Why do they fall apart?

[Jump back to](#page-1-0) title slide

\Box STRONG FORCE! – Holds the nucleus together, even though the protons want to repel each other.

- \Box Too many neutrons? Strong force wont be strong enough, like a rubber band that is stretched too far...it will break!
	- **O**When it breaks, particles come flying out of the nucleus!
- \Box Too many neutrons $=$ radioactive!

Nuclear Chemistry

[Jump back to](#page-1-0)

title slide

Band of Stability and Island of Stability

Beta

Gamma

×

By the way...This is called "neutron bombardment"

Decay

Series

[Jump back to](#page-1-0)

title slide

Decay Series

[Jump back to](#page-1-0)

title slide

u 238 237 α 236 235 $Th - \frac{3}{4}h \rightarrow H$ 234 233 232 \propto 231 Th 230 229 228 \propto 227 Ra 226 225 \propto 224 Atomic Mass 223 222 Rn 221 220
219 α P_{o} 218 217 α 216 215 $Pb \rightarrow b i \rightarrow P_0$ 214 213 212 α 211 $Pb -8i - 6$ 210 β 209 208 ↵ 207 $P_{\mathbf{b}}$ 206 89 90 91 92 93 82 83 84 85 86 87 88 81

Atomic Number

Jump back to

title slide

Half of the radioactive atoms decay each half-life. Decay of Radon-220

Half-Life Equation

Solving for % remaining

$$
A_{E} = A_{S} \times (0.5)^{n}
$$

Then multiply your answer by 100 to put it in % format!

Half Life

[Jump back to](#page-1-0) title slide

Solve for Time/Half-life

$$
\mathbf{A}_{\rm E} = \mathbf{A}_{\rm s} \times (0.5)^{\rm t/h} \quad \text{Isolate } (0.5)^{\rm t/h}
$$

$$
\frac{A_{\rm E} = (0.5)^{\rm t/h} \qquad \text{Bring down exponent using logs}}{A_{\rm s}} = \frac{1}{\frac{1}{\rm h}} \qquad \text{Log } (0.5) \qquad \text{then rearrange for } t \text{ or } h
$$
\n
$$
\text{depending on whether the corresponding values of } \theta
$$

to solve for!

Unit #3 Electrons

- •Quantum mechanical theory
- •Orbital diagrams
- •Writing electron configurations
- •Noble Gas configuration
- •Configuration of ions
- •Absorption and emission

Orbital Diagram

A chart that shows you the order that the orbitals go in.

Orbital Diagrams

[Jump back to](#page-1-0) title slide

Aufbau Principle

An electron occupies the lowest energy orbital that it can.

Pauli Exclusion Principle

No two electrons in the same atom can have the same set of 4 quantum numbers

Hund's Rule

Orbitals of equal energy are each occupied by one electron before any orbital is occupied by a second electron.

Writing Electron Config.

[Jump back to](#page-1-0) title slide

Noble Gas Configurations!

Config. of Ions

[Jump back to](#page-1-0) title slide

Configuration of lons Ga: 1s²2s²2p⁶ 3s² 3p⁶ 4s² 3d¹⁰4p¹ Ga⁺: 1s²2s²2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ **Take 4p first** Ga²⁺: 1s²2s²2p⁶ 3s² 3p⁶ 4s¹ 3d¹⁰ **Take 4s next** Ga³⁺: 1s²2s²2p⁶ 3s² 3p⁶ 3d¹⁰ **Take last 4s** <u>Ga⁴⁺: 1s²2s²2p⁶ 3s² 3p⁶ 3d⁹</u> THEN you can take 3d !

ENERGY SPECTRUM

You can measure the exact wavelength and it can tell you how big the energy gap was that the e- fell from

Unit #4 Periodic Table

- •Structure of the periodic table
- •Periodic trends

Periodic Table Structure

[Jump back to](#page-1-0) title slide

is sometimes ed a metal, d, or a non-metal ng on which table ooking at. is sometimes ed a nonmetal, es a metalloid. No it is weird!

Periodic Table Structure

[Jump back to](#page-1-0) title slide

Things in the same period have: Increasing atomic # and mass $L \rightarrow R$ Same number of energy levels Period 1 has 1 level Period 2 has 2 levels etc... Things in the same group have: Increasing atomic # and mass \downarrow Same number of valence electrons **Exceptions: d and f block** Similar physical and chemical properties b/c they have same # of valence es **Valence Electrons: Outer electrons** Matches the "A" column number

1A has 1 v.e⁻, 2A has 2v.e⁻, etc.

d and f blocks don't follow rules

ATOMIC RADIUS

Periodic Trends

[Jump back to](#page-1-0) title slide

Effective Nuclear

Charge (Z_{eff}) The relative attraction the valence electrons have for the protons in the nucleus

Shielding Effect

The inner shell electrons repel the outer valence electrons - keeps the valence e- from "feeling" the nucleus. More repulsion results in less attraction between nucleus and valence e-.

<u>Isoelectric Species</u>

Atoms/lons that have the same number of e-

All these examples are $1s^22s^22p^6$

Increased protons can pull harder on the valence electrons - greater effective nuclear charge - so the radius is smaller even though they have the same number of electrons and energy levels

Trends [Jump back to](#page-1-0) title slide

Periodic

Subsequent lonizations

Every time you take an e- away it gets harder to take the next one. Radius is getting smaller, so nucleus can pull harder on the valence - harder to remove the next one. HUGE LEAP in I.E. once it's achieved noble gas configuration - why would it want to lose another one?!

Periodic Trends

[Jump back to](#page-1-0) title slide

ELECTRONEGATIVITY

What

How

A measure of the ability of an atom in a chemical compound to attract electrons from another atom in the compound

How strongly can one atom pull on the electrons being shared in a bond.

Noble Gases are LOWEST! They DON'T CARE about attracting electrons!

Periodic Trends

Jump back to title slide

ELECTRON AFFINITY

What

How

How much energy is released when the atom gains an electron to make a negative ion.

How much stability does it gain once it is an anion. More energy released more stable.

Noble Gases are LOWEST! They DON'T CARE about attracting electrons!

Periodic Trends

[Jump back to](#page-1-0) title slide

Unit #5 Bonding and Structure

- •Why bonds form
- •Types of bonds
- •Naming formulas
- •Writing neutral formulas
- •Lewis structures
- •VSPER
- •Hybridization
- •Polarity
- •Intermolecular forces

Types of Bonds

Jump back to title slide

Ionic Bonds

- \blacktriangleright Transfer of electrons makes charges
- \triangleright Electrostatic bond between a positive charge and a negative charge
- \triangleright Metal + Nonmetal $Ca^{2+}O^{2-}$
- Polyatomic Ions, even if nonmetals NH_4^+, SO_4^{2-}

Covalent Bonds

 \triangleright Atoms can't fully transfer electrons, so they share them \triangleright Nonmetal + Nonmetal H CH_4

Metallic Bonds

Electrons "detach" from the atoms

they came from

 $^{(+)}$ $\left(+\right)$

 \triangleright Creates a

"sea of electrons"

that can flow when a charge is applied

 $H₃$ C H H · Electron from hydrogen ● Electron from carbon

Naming formulas

Jump back to title slide

Naming lonic Compounds

 \triangleright Cation first, then anion

 \triangleright Monatomic cation = name of the element

 $\sum Ca^{2+} =$ calcium ion

 \triangleright Monatomic anion = root + -ide \angle Cl⁻ = chloride

 \triangle CaCl₂ = calcium chloride

With Polyatomic Ions

 \triangleright Poly atomic ions always keep their special names, don't change them!

 $\triangleright K_3(PO_3)$

 \triangleright Potassium phosphite

Metals with variable charges

 \triangleright Some metal forms more than one cation \triangleright Use Roman numeral in name \cdot PbCl₂ \cdot Pb²⁺ is cation PbCl_2 = lead(II) chloride \cdot FeO \cdot Fe²⁺ is cation \cdot FeO = Iron(II) oxide

Naming formulas

Jump back to

title slide

Naming Covalent Molecules

Double vowels - when using prefixes we don't like some double vowel combos – drop the last vowel from the prefix portion of the name

 \triangleright Any double vowel with an I is ok!

- \triangleright Diiodide = ok
- \blacktriangleright Pentaiodide = ok
- \triangleright Monoiodide = ok
- \triangleright Monooxide = no! \rightarrow monoxide

Naming Metallic Substances SUPER EASY....

 \triangleright Name the metal. The end.

 \triangleright Cu

 \blacktriangleright Copper

Naming formulas

[Jump back to](#page-1-0) title slide

Odds and Ends

Are the exceptions? Weird rules? YES. ALWAYS.

 \triangleright Diatomic elements – some elements come as a pair and not by themselves

$$
\begin{array}{l} \mathrm{H}_2, \mathrm{N}_2, \mathrm{O}_2, \\ \mathrm{F}_2, \mathrm{Cl}_2, \mathrm{Br}_2, \mathrm{I}_2 \end{array}
$$

Neutral Compounds

- We need our compounds to be "electrically neutral"
	- Charges need to cancel out
	- Not always a 1:1 ratio!

Barium Fluoride

Barium Nitrate

 $Ba(NO_3)_2$

Ammonium Sulfate

 $(MH_4)_2(SO_4)$

<u>Iron(III) Chloride</u>

 $FeCl₃$

Magnesium Carbonate

Lewis Structures

Ionic Compounds

[Jump back to](#page-1-0) title slide

Super easy! Just draw the cation and anion next to each other. Done!

$$
\lfloor \, \text{Mg} \, \rfloor^{2+} \lfloor \, \text{SO}_\bullet^\bullet \, \rfloor^{2-}
$$

More than one of a particular ion? Then just add a subscript outside
the brackets!

$$
[\text{Mg}]^{2+}[\cdot \ddot{F}_{\cdot}^{\bullet}]^{1-}
$$

Lewis Structures

Covalent Molecules

Jump back to title slide

Covalent molecules will share electrons $-$ they each donate one (or more) to a shared bond. Do NOT just randomly throw dots all over your paper!!!! No "guessing and checking" allowed! Follow a systematic set of steps so you never make mistakes!

STEPS

Count & sum ve-

1)

- 2) **Place your atoms**
- 3) Bond all atoms w/ a single bond
- Give all atoms a full shell 4)
- 5) Re-count the ve- you used
- 6) Used too few? Put extra on the central atom
- 7) Used to many ve-? Then try double or triple bonds to fix if needed

Lewis Structures

[Jump back to](#page-1-0) title slide

PLACEMENT "RULES"

VSEPR

[Jump back to](#page-1-0) title slide

VSEPR Model (Valence Shell Electron Pair Repulsion)

■ The structure around a given atom is determined *mostly* by minimizing electron pair repulsions.

■ They try to maximize the distance between electrons

VSEPR

Bond Angle Distortion from Lone Pairs

VSEPR

Jump back to title slide

VSEPR - AXE Method

- \cdot The A represents the central atom.
- \cdot The X represents how many bonded atoms.
- The E represents the number of lone electron pairs present on the central atom.
- \cdot The sum of X and E, sometimes known as the steric number.

VSEPR

Predicting Molecular Geometry and Hybridization

[Jump back to](#page-1-0) title slide

Hybridization

Jump back to title slide

Hybridization - The Blending of Orbitals

Hybridization is the combining of two or more orbitals of nearly equal energy within the same atom into orbitals of equal energy.

sp Hybridization s orbital p orbital Hybridize 180

Two sp hybrid orbitals

sp hybrid orbitals shown together (large lobes only)

linear, 180°

sp Hybrid Orbitals

One s orbital combines with one p orbital Two p orbitals are left the same

What's happening inside covalent molecules like O_2 or H_2 ?

Electrons are shared equally

Polarity

[Jump back to](#page-1-0) title slide

Example: HF

HF is covalent but electrons are not shared equally

Molecules become POLAR when electrons are not shared equally

Polarity

[Jump back to](#page-1-0) title slide

Symmetry...the pole destroyer!

 $CO₂$ Has 1 carbon surrounded by 2 electronegative Oxygens, but is NOT polar?!?!

Electron density is still SYMETRICAL which makes it non-polar

Careful about polar BOND versus polar MOLECULE

[Jump back to](#page-1-0) title slide

Polarity

Three ways to diagram "dipoles"

IMFs

Vocabulary

[Jump back to](#page-1-0) title slide

INTRAmolecular Forces

Forces holding together the atoms **INSIDE** a molecule or compound.

Types: Ionic forces, covalent forces

INTERmolecular Forces

Attractions or repulsions which act between neighboring molecules

IMFs

[Jump back to](#page-1-0)

title slide

London Dispersion Forces

VERY WEAK and TEMPORARY!!!!

Caused by temporary unequal electron distribution that makes weak and temporary dipoles. Also called "instantaneous dipole"

London Dispersion Forces Continued...

EVERYTHING HAS LONDON DISPERSION FORCES BECAUSE EVERYTHING HAS ELECTRONS!

Bigger molecules will have more LDFs – more surface area to get temporary unequal electrons

 C_8H_{18} will have more LDFs than C_3H_8

Dipole - Dipole

ONLY OCCURS IN POLAR MOLECULES

Partially negative portion of one polar molecule attracted to Partially positive portion of the second polar molecule

IMFs

[Jump back to](#page-1-0) title slide

Some properties that relate to intermolecular forces

IMFs

Jump back to title slide

Bulk Solids

Interactions in solids

COMBINATION OF:

intramolecular AND intermolecular forces in a "large" or "bulk" scale

3 TYPES

Metallic (weakest) Ionic Lattice (middle) **Network covalent** (strongest)

Bulk solids have very high melting/boiling points because there are so many inter and intra molecular forces holding the atoms close together

Unit #6 Reactions

- •Signs of a chemical reaction
- •Balancing equations
- •Types of reactions
- •Predicting products
- •Net ionic equations

Reminder: Signs of a Chemical Rxn

Law of Conservation of Mass

- In normal chemical reactions (not nuclear rxns),
- Total mass of reactants is equal to total mass of products
- Nothing can magically appear
- Nothing can magically disappear

Science not Magic!

Diatomic Gases

 H_2 Cl_2 **Horses Need Oats For Clear** N_2 Br₂ Brown "Eyes" F_{2}

Rules for Balancing

- 1) Write the skeleton equation
- 2) Count atoms on each side of arrow (look at the subscripts & the coefficients!)
- 3) Change coefficients so the atoms are balanced; NEVER change subscripts!
- 4) Make sure coefficients are in lowest ratio possible USE

PENCILIII

5) Check your work!

Balancing

Jump back to title slide

Tips for Balancing that (sometimes) Help!

- Stuck? Erase and start over!
- Try to balance atoms that appear in the fewest number of places first
- Try to leave any diatomics until the end
- Oxygens are often the hardest to balance
- Try to balance polyatomic ions as a "chunk"
- Combustion reactions put a "2" in front of the hydrocarbon and THEN \bullet count & balance (may need to reduce your coefficients at the end, but it makes it easier!)

[Jump back to](#page-1-0) title slide

Synthesis

Two things combining into one

Example:

 $X + Y \rightarrow XY$ $O_2 + C \rightarrow CO_2$

What to look for:

More reactants than products

[Jump back to](#page-1-0) title slide

Decomposition One thing falling apart into two

Example:

 $XY \rightarrow X + Y$ $CaCO₃ \rightarrow CaO + CO₂$

What to look for:

More products than reactants

[Jump back to](#page-1-0)

title slide

Combustion **Burning** Example: (almost always a hydrocarbon) Hydrocarbon + O_2 \rightarrow CO₂ + H₂O $CH₄ + 2O₂ \rightarrow CO₂ + 2H₂O$ What to look for: (Usually) Reactants = Hydrocarbon and O_2 Products = $CO₂$ and H₂O

[Jump back to](#page-1-0) title slide

Single Replacement

Swapping one element

Example: $A + BC \rightarrow AC + B$ $2Al + 3Pb(NO₃)₂ \rightarrow 2Al(NO₃)₃ + 3Pb$

What to look for:

Reactants =1 element and 1 compound Products = 1 element and 1 compound, but different ones
Types of Reactions, Predicting Products

[Jump back to](#page-1-0) title slide

Double Replacement Swapping two elements

Example: $AB + CD \rightarrow AD + CB$ $AgNO₃ + KCl \rightarrow AgCl + KNO₃$

What to look for:

Reactants = 2 Compounds Products = 2 Compounds but different ones

Types of Reactions, Predicting Products

[Jump back to](#page-1-0) title slide

For Replacement Rxns

- . If element is a cation, replace it with the other cation. If it is an anion, replace it with the other anion
- All neutral compounds need to have a cation and anion when finished (IN THAT ORDER)
- You need NEW subscripts cross over FROM **SCRATCH**
- Careful about diatomic elements in single replacements – they need to be diatomic!

title slide

Net lonic

Jump back to

title slide

Solubility Chart

- <u>Na₂O</u> **SOLUBLE b/c it** has Na⁺ in it!
- $Mg(OH)$, **INSOLUBLE b/c** OH⁻ insoluble and Mg^{2+} not one of the exceptions

Not Soluble = forms precipitate

Soluble = dissolves in water (aqueous)

Net Ionic

[Jump back to](#page-1-0) title slide

NOT DONE!!!! NEED TO THINK ABOUT PHASES!

The Balanced Equation

 $2Al + 3Pb(NO_3)$, \rightarrow 3Pb + 2Al(NO₃)₃ **The Overall Equation** $2Al_{(s)}$ + 3Pb(NO₃)_{2(ag)} \rightarrow 3Pb_(s) + 2Al(NO₃)_{3(ag)} The Complete Ionic Equation $2Al_{(s)}+3Pb^{2+}_{(aq)}+6N_3^{2-}_{(aq)}$ + 3Pb_(s) + 2Al³⁺ (aq) + 6MO₃⁻ (aq) The Net Ionic Equation Spectator **Ions** $2Al_{(s)}+3Pb^{2+}_{(aq)} \rightarrow 3Pb_{(s)}+2Al^{3+}_{(aq)}$

[Jump back to](#page-1-0) title slide

Particulate Diagrams help our brains!

The Balanced Equation

$2Al + 3Pb(NO₃)₂$ \rightarrow 3Pb + 2Al(NO₃)₃

Unit #7 Stoichiometry

- •The mole
- •Molar mass
- •Molar conversions
- •Mole ratio
- •Stoichiometry

The Mole

[Jump back to](#page-1-0) title slide

THE MOLE A.K.A AVOGADRO'S NUMBER

1 mole = 6.02×10^{23} objects 602,000,000,000,000,000,000,000

Amedeo Avogadro 1776 - 1856

Decided that:

6.02 \times 10²³ molecules per mole

Molar Mass

[Jump back to](#page-1-0) title slide

MOLAR 1 mole = 6.02×10^{23} objects How much does ONE MOLE of **MASS** something weigh?

1 atom of Hydrogen = 1.01 amu* 1 MOLE of Hydrogen = 1.01 grams

1 atom of Carbon = 12.01 amu 1 MOLE of Carbon = 12.01 grams

*"Atomic mass unit" = 1.661×10^{-24} grams

Picking 1 mol = 6.02×10^{23} makes it so we don't need to manually do the conversion each time! That's why it's a random number!

Jump back to title slide

Use Periodic

Table!

Multiple atoms in a molecule? Add up their individual masses to find molar mass of molecule

f.

```
CO<sub>2</sub> = 1 carbon + 2 oxygens
```

```
Molar mass = 12.01g + 2(16.00g)CO<sub>2</sub>
```
Careful with parenthesis!

Mole Ratio

[Jump back to](#page-1-0) title slide

Stoichiometry

Mole Ratios

The "KEY" to stoichiometry!

If I have 3 moles of this, how many moles of that do I have?

If I have 2 moles of this, how many moles of that can I make?

[Jump back to](#page-1-0) title slide

[Jump back to](#page-1-0) title slide

 $N_2 + 3H_2 \rightarrow 2NH_3$

75 grams $NH_3 \rightarrow ?gH_2$

Pathway: grams $A \rightarrow$ moles $A \rightarrow$ moles $B \rightarrow$ grams B **Mole Ratio** Molar Molar <u>moles B</u> $mass of $B$$ mass of A moles A XqB $X q A$ 1 mole B 1 mole A

[Jump back to](#page-1-0) title slide

Stoich.

Unit #8 Advanced Chemical Ratios

- •Limiting reagent stoichiometry
- •Percent composition
- •Empirical formulas
- •Combustion analysis

Limiting Reagent Stoich.

[Jump back to](#page-1-0) title slide

> **Limiting Reagent Stoichiometry:** A type of stoich problem where you run out of one chemcial too soon, and have extra of the other chemical left over

dimensional analysis to compare... What you *HAVE* (versus) What you *NEED*

[Jump back to](#page-1-0) title slide

Steps

- 1. Grams to moles
- 2. Have vs. need
- 3. **Identify limiting**
- Stoich with limiting (if asked) 4.
- 5. Find xs left (if asked)

Re
S

You don't have enough $Br₂$ – that makes it the "limiting regent" - you will run out of it first!

So K is your "excess reagent" - you will have some extra left over when done.

Limiting **Reagent** Stoich.

Jump back to title slide

If you reacted 150.0 g of K with 225 g of Br₂, how many g of KBr

can be made? How much excess reagent is left?

$$
2K + Br_2 \rightarrow 2KBr
$$

Or... realize you already did part of it right?!

*Just be careful not to round too much early on if you want to use your earlier answer to continue doing your stoichiometry - you have to use your judgement

 $= 335.1 g KBr$ can be made

* If it doesn't specify a unit (common) - then just leave in moles! Otherwise, just do more dimensional analysis to convert

Jump back to title slide

Element's Mass $x = x$ **100 = % Composition Example Molecule's Mass Calculate the % composition of Magnesium Carbonate** Molar Mass of Molecule $24.31 + 12.01 + 3(16.00) = 84.32$ g/mol $Mg = \left(\frac{24.31}{84.32}\right) \cdot 100 = 28.83\%$ Check that it adds up to 100% !!! $C = \left(\frac{12.01}{84.32}\right) \cdot 100 = 14.24\%$
 3 x 16 because there are 3 oxygens!
 $O = \left(\frac{48.00}{84.32}\right) \cdot 100 = 56.93\%$

Empirical

Formulas

Empirical Formula

The simplest, reduced version of a formula. Smallest whole number ratios possible.

Molecular Formula

The real version of the formula $-$ may or may not be in the simplest most reduced form, just depends on the specific formula.

Empirical Formulas

> **Ionic Formulas** Are always empirical! NaCl, $MgCl_2$, $Al_2(SO_4)_3$ **Covalent Formulas** Sometimes empirical, sometimes not. **Molecular:** $H₂O$ $C_6H_{12}O_6$ $C_{12}H_{22}O_{11}$ **Empirical:** $H₂O$ $CH₂O$ $C_{12}H_{22}O_{11}$

Jump back to title slide

Determining Empirical Formula

1) Given: % composition

2) Assume you have 100g sample to make #s easy

3) Use the poem!

Percent to mass Mass to moles Divide by small Multiply 'till whole **Empirical Formulas**

Jump back to title slide

Adipic acid contains 49.32% C, 43.84% O, and 6.85% H by mass. What is the empirical formula of adipic acid? 1. Percent to mass - 49.32g C, 43.84g O, 6.85g H **2. Mass to mole** $\frac{49.32 g \, carbon}{12.01 g \, carbon}$ = 4.107 mol carbon $\frac{6.85 g \, hydrogen}{1.01 g \, hydrogen} = 6.78 mol hydrogen$ $\frac{43.84 g\,oxygen}{16.00 g\,oxygen} = 2.74 mol oxygen$

Empirical Formulas

[Jump back to](#page-1-0) title slide

Divide by small -3.

divide the mole values by the smallest mole value found... gets you the simplest ratios!

 $\frac{4.107 \, mol \, carbon}{1.50} = 1.50$ **Carbon:** $2.74 mol$ $\underline{6.78}$ mol hydrogen = 2.47 **Hydrogen:** $2.74 mol$ $\frac{2.74 \, mol \, oxygen}{2.74 \, mol} = 1.00$ **Oxygen:**
Empirical Formulas

Jump back to title slide

[Jump back to](#page-1-0) title slide

Determining Molecular Formula

- 1) Find molar mass of the empirical formula
- 2) Divide molecular formula mass by empirical formula mass
- 3) Multiply empirical formula subscripts by the multiplier # found in step 2

No cute rhyme this time...sorry! \odot

Empirical Formulas

[Jump back to](#page-1-0) title slide

The empirical formula for adipic acid is $C_3H_5O_2$. The molecular mass of adipic acid is 146 g/mol. What is the molecular formula of adipic acid?

- 1. Molar mass of empirical formula $3(12.01 \text{ g}) + 5(1.01) + 2(16.00) = 73.08 \text{ g/mol}$
- 2. Divide molecular by empirical masses

 $146 = 1.997 \rightarrow 2$ *you will usually have to round a bit* 73.08

Multiply empirical by multiplier found in step 2 3. $(C_3H_5O_2)$ x 2 = $C_6H_{10}O_4$

Combust. Analysis

[Jump back to](#page-1-0) title slide

Compounds containing C, H and O are routinely analyzed through combustion in a chamber like this.

- C is determined from the mass of CO₂ produced.
- H is determined from the mass of H₂O produced.
- O is determined by difference after the C and H have been determined.

[Jump back to](#page-1-0) title slide

So now it will be like this!

- % to mass
- Mass to mole
- Divide by small
- Multiply til whole

Use Combustion Analysis Data and Dimensional Analysis to find grams

Combust. Analysis

[Jump back to](#page-1-0) title slide

The amount of CO₂ gives the amount of C
originally present in the sample compound

The amount of $H₂O$ gives the amount of H originally present in the sample

The amount of O originally present in the
sample can be found by simple subtraction

- **Mass of sample** \bullet Mass of C
	- Mass of H
	- = Mass of Oxygen!

Combust. **Analysis**

Jump back to title slide

Important Points to Know

- Must know the mass of the unknown substance before burning it
- The unknown will be burnt in pure oxygen, present in large excess
- The amount of oxygen will be determined by subtraction.
- The combustion products always have CO₂ and H₂O. Might have extra products if other elements are present!
- . Nitrogen product can come in different forms. N2, NH3, etc. Will be given more info if needed. Often given as a separate experiment will need to convert all to %'s if this is the case! Nitrogen is the problem child in combustion analysis.
- All the carbon winds up as CO₂ and all the hydrogen winds up as $H₂O$.

Combust. **Analysis**

Jump back to title slide

Steps to Solve

- 1) Determine the mass of each element present in the original compound using dimensional analysis
	- Carbon is always in CO₂ in the ratio of 1 mole CO₂ = 1 mole C
	- Hydrogen is always in H₂O in the ratio of 1 mole H₂O = 2 mole H
	- Nitrogen can be $(NH_3, N_2, N, NO_2, etc...)$. If data from a separate experiment, make sure to convert masses to % values!
- 2) Subtract to solve for oxygen

Sample mass $-(C_{mass}+H_{mass}+N_{mass}$ if necessary, or any other random element) 3) Now continue with the Rhyme from before!

- Mass to moles
- Divide by small
- Multiply until whole

Combust. Analysis

[Jump back to](#page-1-0) title slide

Example #1 Original sample = $8.38 g$ and yielded $16.0 g$ CO, and 9.80 **Moles of Carbon** 16.0 g CO2 | 1 mole CO2 | 1 mole C = 0.364 mole C $44.0 g CO₂$ 1 mole $CO₂$ **Moles of Hydrogen** 9.80 g H2O \vert 1 mole H2O \vert 2 mole H = 1.09 mole H 18.0 g H2O 1 mole H2O

 $gH₂O$

Example #1 Original sample = 8.38 g and yielded 16.0 g CO, and 9.80 $qH₂O$

[Jump back to](#page-1-0) title slide

Moles to Mass to Calculate Oxygen 0.364 mole C | 12.0 g C = 4.37 g C 1 mole C 1.09 mole H $\vert 1.01 \, \mathsf{g} \, \mathsf{H} \vert$ = 1.10 g H 1 mole H **Grams of Oxygen** 8.38 g Sample $-$ 4.37 g C $-$ 1.10 g H = 2.91 g Oxygen **Combust. Analysis**

Jump back to title slide

Original sample = $8.38 g$ and yielded 16.0 g CO, and 9.80 **Example #1** $gH₂O$

Back to the Rhyme! Mass to moles, divide by small, multiply till whole!

Divide by small, multiply till whole (if needed)

 $1.09 \text{ H} = 5.989 \rightarrow 6$ o.364 C $= 2$ 0.182 0.182

$$
0.182 \text{ O} = 1
$$

0.182

 0.364 mole C 1.09 mole H 0.182 mole O

Therefore

 C_2H_6O

g Oxygen in Original Sample

Back to Rhyme! mass to mole... divide by small... multiply 'till whole

Unit #9 Gas Laws

- •KMT theory
- •Basic gas law equations
- •Ideal gas law equation
- •Dalton's law of partial pressures
- •Gas stoichiometry

KMT Theory

Jump back to title slide

The Kinetic Molecular Theory applies to what type of gases?

IDEAL GASES

A hypothetical gas that follows all the rules of KMT

- Doesn't really exist!!!
- . Allows us to estimate a lot of things, but they are not exactly real

REAL GASES can behave like ideal gases, but only under certain conditions

- **.** High temperature
- **.** Low pressure
- . Best to be low IMFs, nonpolar

5 assumptions of KMT

- 1) Gases consist of large #s of tiny particles that are far apart relative to their size
	- •Most of the volume if a gas is empty space.
	- Gas particles themselves, are so small they don't actually have a "volume"
	- Gas particles are further apart than in a solid or a liquid

2) Collisions between gas particles and between particles and container walls are elastic collisions

•When two molecules collide with each other, they transfer their kinetic energy, but they don't lose any energy overall.

- 3) Gas particles are in continuous, rapid, random motion. They therefore, possess kinetic energy, which is energy of motion.
- •They move in all random directions, non-stop
- 4) There are no forces of attraction between gas particles
- •They behave like billiard balls

5) The temperature of a gas depends on the average kinetic energy of the particles of the gas.

$$
KE = \frac{1}{2} mv^2
$$

Temperature = \uparrow velocity = \uparrow kinetic energy

Gas Laws

Jump back to title slide

Use Kelvins!

Just another unit of measurement.

$$
K = {}^{\circ}C + 273
$$

"Absolute Zero"

At 0 K there is **NO MOLECULAR MOVEMENT!**

Zero really means zero!

Units of Pressure

Lots of choices, just convert

STP

"Standard" Temperature & Pressure

 0° C \rightarrow 273 K 1 atm \rightarrow 760 mmHg

Gas Laws

Boyle's Law

$$
P_1V_1 = P_2V_2
$$

Boyle's Law

- Temperature and # moles held constant
- **Indirect (or inverse)** relationship

If pressure goes \uparrow Then volume goes \downarrow

 $P_1V_1 = P_2V_2$

Jump back to title slide

Charles' Law

Charles' Law

- **Pressure and # moles** held constant
- **Direct relationship** If temperature goes \uparrow Then volume goes \uparrow

note Graph doesn't go all the way to zero because the molecules will eventually get as close as possible and they will still always take up space

Jump back to title slide

Gay-Lussac's Law

Gay-Lussac's **Law**

- **Volume and # moles** held constant
- **Direct relationship** If temperature goes \uparrow Then pressure goes \uparrow

note Graph doesn't go all the way to zero because at low temperatures and pressures it won't be a gas anymore, it will turn into a solid or a liquid. We use a dotted line to show the portions that are not gas phase

Gas Laws

Avogadro's **Law**

$$
\frac{V_1}{n_1} = \frac{V_2}{n_2}
$$

- **Pressure and** temperature held constant
- **Direct relationship** If # of moles goes \uparrow Then volume goes \uparrow

Jump back to title slide

Combined Gas Law

$$
\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}
$$

Combined Gas

$$
\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}
$$

- # of moles held constant
- **Combines most common variables** together – not common to change moles of gas

Ideal Gas Law

Jump back to title slide

Ideal Gas Law

"Piv-nert"

 $PV = nRT$

Ideal Gas Constant

Ideal Gas Law $PV = nRT$

- $P = pressure$
- $V = volume$
- $n =$ number of moles
- $R = ideal$ gas constant
- $T = temperature$

 mRT ΙV PV

MP RT

Molar Mass Kitty always puts DIRT over its PEE

title slide

Mole Fractions

$$
X_{gas\,1} = \frac{n_{gas\,1}}{n_{total}}
$$

$$
X_{gas\,2} = \frac{n_{gas\,2}}{n_{total}}
$$
Etc...

Partial Pressure

$$
P_{gas\,1} = (X_{gas\,1}) \cdot (P_{total})
$$

$$
P_{gas\,2} = (X_{gas\,2}) \cdot (P_{total})
$$

$$
\mathsf{Etc}....
$$

Law [Jump back to](#page-1-0) title slide

Dalton's

Two 1.0 L containers, A and B, contain gases under 2.0 and 4.0 atm, respectively. Both gases are forced into Container C (W/vol. 2.0 L). Find total pres. of mixture in C. $P_{1A}V_{1A} = P_{2CA}V_{2CA}$ 2.0 atm $(1.0 L) = P_{2CA} (2.0 L)$ P_{2CA} = 1.0 atm Ε C $P_{1B}V_{1B} = P_{2CB}V_{2CB}$ 4.0 atm $(1.0 L) = P_{2CB} (2.0 L)$ P_{2C} P_1 V_{1} V_{2C} $P_{2CB} = 2.0$ atm 1.0_L 1.0 atm A 2.0 atm $2.0 L$ 4.0 atm 2.0 atm B 1.0_L Now do a partial pressure problem and add up your $P_{2CTotal}$ = 3.0 atm two partial pressures to find total pressure!

Jump back to title slide

Collecting Gas Over Water via Displacement

The gas being created will push the water out of the collection container and "displace" it - allows you to find the volume collected.

The total pressure in the collection container is the same as atmospheric pressure in the room.

Water vapor is a bit of a problem though...

The collected gas will have water vapor in it as well. The amount of water vapor will change based on the temperature.

Jump back to title slide

"Wet Gas" versus "Dry Gas"

The total pressure will be a result of the partial pressure of the desired collected gas being generated by the reaction, and the partial pressure of the water vapor.

$$
P_{total} = P_{dry\,gas} + P_{H_2O}
$$

$$
P_{dry\,gas} = P_{total} - P_{H_2O}
$$

Example $#1$

Hydrogen gas is collected over water at 22°C. Find the pressure of the dry gas if the atmospheric pressure is 708 mmHg.

Remember: The total pressure in the collection bottle is equal to atmospheric pressure and is a mixture of $H₂$ and water vapor.

title slide

Gas Stoichiometry

- "Normal" stoichiometry
	- = using molecules, masses & molar masses.
- We can use stoichiometry for gas reactions!
- STILL need mole ratios... might need gas laws to help you find # of moles though!

mole ratio from molar mass molar mass balanced equation $of A$ \vert of B grams A ↔ moles A ↔ moles B ↔ grams B \uparrow + PV = nRT + \uparrow $P, V, T(A)$ $P, V, T(B)$

At times you will be able to use 22.4 L/mol at STP or 24.8 L/mol at SATP as shortcuts (SATP=298K instead of 273K)

Stoich. **Jump back to** title slide

Gas

Sample problem 1

 $CH₄$ burns in O₂, producing CO₂+ H₂O(g). A 1.22 L CH₄ cylinder, at 15°C, has a pressure of 328 kPa.

a) What volume of $O₂$ at 100kPa and 298K will be required to react completely with all of the $CH₄$?

 $CH₄(g) + 2O₂(g) \rightarrow CO₂(g) + 2H₂O(g)$ First:

Pathway:

L of A \rightarrow mol A \rightarrow mol B \rightarrow L of B **Mole Ratio** $PV = nRT$ $PV = nRT$ of A of B

8.28 L

Unit #10 Thermochemistry

- •Endo versus Exo
- •Specific heat
- •Reaction Diagrams
- •Heat of Formation

•Calorimetry

- •Bond Energy
- Heating/cooling curves Hess's Law
- •Heat of Reaction

What do you feel???

When a SYSTEM (reaction) ABSORBS HEAT **FROM YOU** (you are the surroundings)

YOU FEEL COLD!!!!

[Jump back to](#page-1-0) title slide

What do you feel???

When a SYSTEM (reaction) RELEASES HEAT **TOWARDS YOU** (you are the surroundings)

Thermo

Thermo

title slide

<u>fic Heat</u> <u>Speci</u>

The amount of energy it takes to raise the temperature of 1 gram of something by 1 °C

Units:

$Q = mC\Delta T$

 $C =$ specific heat $Q =$ energy lost or gained $m = mass$ ΔT = "delta" T or change in temp

 \overline{q} or

 $Q = m \times C \times (T_{final} - T_{starting})$

Calorimetry

[Jump back to](#page-1-0) title slide

Durpose of Calorimetry

Measure heat transferred from one object to another, or the energy transferred during a reaction.

Energy In = Energy Out Energy Absorbed = Energy Released ubstance 1 substance₂ Negative sign will stand for "OPPOSITE" not necessarily negative. Makes it so it doesn't really matter which material you start with.

Hot Water Metal is heating up **Energy transfer into METAL**

Cold Water Water is heating up **Energy transfer into WATER**

Tfinal_{water} = **Tfinal**_{metal}

Heating Curves

Jump back to title slide

(Cooling would just be the opposite of these things!)

HEATING/COOLING

- $Q = mCAT$
- $C = J/g^{\circ}C \rightarrow$ Has a temperature component.
- So.... Cant use it for phase changes

PHASE CHANGES

- \cdot $\Delta T = 0$ BUT Q $\neq 0$
- Get rid of ∆T, and replace C with something else
- \cdot Q = mL
- L = "Latent Heat" \rightarrow J/g The energy required to phase change one gram of substance

Heating

Curves

Calculate everything separately and then add up your answers. You could have up to five Q values to add up!

Use ONLY the temperature change on the ONE LINE you are working with at a time!

Heating Curves [Jump back to](#page-1-0)

title slide

 \bigcirc ONLY Solid at 0°C **Liquid AND Gas** $\left(\mathbf{B}\right)$ ONLY Liquid at 0°C **Solid AND Liquid ONLY** gas \bigodot ONLY Liquid at 100°C ONLY Gas at 100°C **ONLY liquid ONLY Solid**

Heating Curves

Jump back to title slide

2. Determine the energy required to convert 21.1 grams of ice at -6°C to steam at 100°C

1) Heat ice (2) Melt ice 3) Heat liquid **Vaporize** Steam @ 100, have to vaporize! Need line 4 $100 \Delta T_{2}$ 0

Double Negative! Be Careful! Q_1 = mC ΔT = (21.1g)(2.09_{1/g}c) (0° -⁻⁶) = 264.59 J Q_2 = mL = (21.1g)(334 J/g) = 7047.4 J Q_3 = mC ΔT = (21.1g)(4.18 y_{gC})(100° - 0°) = 8819.8 J Q_a = mL = (21.1g)(2260 J/g) = 47686 J $Q_T = Q_1 + Q_2 + Q_3 + Q_4$ $= 63817.79 J$

Heat of Reaction

Jump back to title slide

Molar Heat Capacity

Energy required to raise the temperature of one **MOLE** of a substance one degree

 $Q = nC\Delta T$

*If you make sure your units cancel, this is easy!!

Heat of Reactions

Amount of energy involved in a reaction

2Al + Fe₂O₃ \rightarrow 2Fe + Al₂O₃ ΔH_{rxn} =-851.5kJ (Remember, ΔH is basically Q) ΔH negative \rightarrow exothermic \rightarrow product ΔH positive \rightarrow endothermic \rightarrow reactant

[Jump back to](#page-1-0) title slide

Heat of Reactions per mole

Sometimes you want it per mole of a certain substance. Just take mole ratios into account! 2Al + $Fe_2O_3 \rightarrow 2Fe + Al_2O_3$ $\Delta H_{rxn} = -851.5 kJ$ 1 rxn = -425.75 <u>kJ</u> $-851.5 kJ$ 2 mol Al mol Al 1 rxn

Heat of Formation

Jump back to title slide

Heat of Formation

If you know how much energy it takes to form each substance in a reaction, you can calculate the Heat of Reaction!

 $\Delta H^{\circ} = \Sigma n \Delta H^{\circ}_f (products) - \Sigma n \Delta H^{\circ}_f (reactants)$

- Σ means sum. \bullet
- n is the coefficient of the reaction.
- values will be given to you in a chart.

Calculating Heat of Rxn from Heats of Formation

Calculate ΔH for the combustion of methane, CH₄ $CH₄(g) + 2O₂(g) \rightarrow CO₂(g) + 2H₂O(l)$ $\Delta \boldsymbol{H}^{\circ} = \boldsymbol{\Sigma} \boldsymbol{n} \Delta \boldsymbol{H}_{f}^{\circ}(\boldsymbol{products}) - \boldsymbol{\Sigma} \boldsymbol{n} \Delta \boldsymbol{H}_{f}^{\circ}(\text{reactants})$

 $\Delta H_{\rm rxn}$ = [-393.50kJ + 2(-285.83kJ)] – [-74.80kJ +2(0kJ)] ΔH_{rxn} = -890.36 kJ/mol_{rxn}

Bond Energy

Jump back to

title slide

Bond Energy

It TAKES energy to break a bond - ENDO

- Otherwise they would just break by themselves!

Energy is RELEASED when a new bond forms - EXO

- If the new bond isn't more stable, lower energy, it wouldn't want to form!

$2H_2 + O_2 \rightarrow 2H_2O$

You have to break: 2 H-H bond and 1 O=O bond You have to form: 4 H-O bonds

 $2(436) + (498) + 4(-463) = -482$ kJ/mol (exo)

Hess's Law **Jump back to** title slide

Hess's Law

"In going from a particular set of reactants to a particular set of products, the change in enthalpy is the same whether the reaction takes place in one step or a

series of steps."

Relationships Involving ΔH_{rxn}

Multiplying Rxn by a # to Change Coefficients

 $\Delta H_{\rm rxn}$ is multiplied by that factor.

• Because $\Delta H_{\rm rxn}$ is *extensive* – depends on the amount of substance

 $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H = -393.5$ kJ **2** $C(s) + 2 O_2(g) \rightarrow 2 CO_2(g)$ $\Delta H = 2 \times (-393.5 \text{ kJ}) = -787.0 \text{ kJ}.$

Reversing a rxn to flip which side the products/reactants are on Flip the sign of ΔH , if positive now negative, if negative, now positive

 $C(s) + O_2(g) \rightarrow CO_2(g)$ ∆*H* = −393.5 kJ $CO_2(g) \rightarrow C(s) + O_2(g)$ $\Delta H = -(393.5) = +393.5 \text{ kJ}$ Hess's Law

Jump back to title slide

Hess's Law Example Problem #1

Calculate ΔH for the combustion of methane, CH₄:

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Step $#4$:

 $-rxn1$

 $rxn2$

Cross out things that show up on both sides, then sum up your ΔH values

 CH_4 \rightarrow C \rightarrow 2 H_2 $-$ (-74.80 kJ)
 C \rightarrow O_2 $-$ 393.50 kJ $-(-74.80 kJ)$

 2×10^{24} $2 \times 10^{2} + 0^{2} + 0^{2} + 2H^{2}$ $2 \times (-285.83 \text{ kJ})$

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ -890.36 kJ

Unit #11 Solutions

- •Solution vocabulary
- •Solubility
- •Solutions calculations

Solutions Vocabulary

[Jump back to](#page-1-0) title slide

Solutions Vocabulary

Jump back to title slide

Solute

A solute is the substance that is being dissolved in a solution.

Salt in salt water Sugar in soda drinks Carbon dioxide in soda drinks

Solvent

A solvent is the thing that something is being dissolved into.

Water in salt water

Water in soda

Solution

The solute + solvent combined is then called the "solution"

Salt water

Soda

Solubility

The amount of solute that can be dissolved at a given temperature.

Solutions Vocabulary

[Jump back to](#page-1-0) title slide

Saturation...

Saturated solution: The maximum amount of solute dissolved . Unsaturated solution: Less than the maximum amount of solute dissolved **Supersaturated solution: More than** the maximum amount of solute dissolved

[Jump back to](#page-1-0) title slide

Temperature and Pressure can affect solubility. Gases and solids are affected differently sometimes.

[Jump back to](#page-1-0) title slide

Jump back to title slide

œ

[Jump back to](#page-1-0) title slide

Electrolytes:

. Ionic solutes that dissociate (come apart) into ions in a solution $NaCl_{(s)} \rightarrow Na^{+}_{(aq)} + Cl^{-}_{(aq)}$

They can conduct electricity because there are charged particles for the electrons to move between!

Non-Electrolytes:

• Covalent solutes that do not dissociate, but that can still potentially dissolve in a solvent $C_6H_{12}O_6(s) \rightarrow C_6H_{12}O_6(aq)$

Jump back to title slide

Increasing Dissolution (how fast something dissolves)

Solids

- Increase temperature for more collisions \bullet
- Stir it to expose more surface area \bullet
- Crush it up so more surface area

Gases

- Decrease temperature \bullet
- Increase pressure

Solutions

Calcs.

Mass Percent or Percent Composition

Ratio of masses expressed as a %

$$
Mass percent = \left(\frac{mass of solute}{mass of solution}\right) x 100
$$

[Jump back to](#page-1-0) title slide

Parts per Million - ppm

Ratio of masses but not expressed as a %, but rather out of one million – used when very low levels are significant like for pollution.

 $ppm = \left(\frac{mass~of~solute}{mass~of~solution}\right) \times 1,000,000$

title slide

Grams/Liter

Ratio of mass of solute to volume of solution. Easy for when measuring a solid solute dissolved in a liquid. Used to test solubility. "Quick and dirty" unit.

Grams per Liter = $\begin{pmatrix} mass \ of \ solute \\ Volume \ of \ solution \end{pmatrix}$

Mole Fraction

Ratio of moles of solute n_A , to moles of total solution (solute n_A + solvent n_B)

$$
Mole fraction of A = \chi_A = \frac{n_A}{n_A + n_B}
$$

Solutions Calcs.

[Jump back to](#page-1-0) title slide

Molarity – the best one! \odot

Ratio of moles of solute to liters of solution. Similar to grams/L but converting it to moles lets us perform chemistry calculations better. Always trying to get to moles anyway!

 $\begin{array}{|l|}\n\hline\text{Molarity}=M=\frac{moles of\,} {\text{Liter of}\, solution}\n\end{array}$

[Jump back to](#page-1-0) title slide

Making Dilutions

When you take one more concentrated solution and take a small amount of it and dilute it down by adding more solvent.

$$
M_1V_1=M_2V_2
$$

[Jump back to](#page-1-0) title slide

Unit #12 Kinetics

- •Collision Theory
- •Rate affecting factors
- •Average rates
- •Rate expressions
- •Instantaneous rates
- •Rate laws

•Method of initial rates

Collision Theory

[Jump back to](#page-1-0) title slide

Collision theory

Reactants must collide in order to react

Activation energy

Minimum amount of energy colliding particles need in order to react.

Fast Enough AND Correct Orientation

Rate **Affecting Factors**

Jump back to

title slide

Factors of Reaction Rate

- 1. Temperature
- 2. Concentration/Pressure
- 3. Surface area
- 4. Catalysts

(Typically) Increase any of these, you get more effective collisions... so it goes faster!

Rate Affecting Factors

Jump back to title slide

Catalysts

What is it?

- A chemical that you add to rxn

- Helps orient molecules to reach transition state easier
	- So you do not need as much energy
		- Lowers Activation Energy
			- = faster reaction BECAUSE more molecules will have the needed energy to get over Ea

You don't get "more" collisions you just get more collisions that will be EFFECTIVE!

 (a)

Rate Affecting Factors Jump back to title slide

Reaction Mechanism

A chemical equation does not tell us **HOW** reactants become products; just a summary of the overall process.

The reaction mechanism is the series of steps by which a chemical reaction occurs.

Some reactions take place in one step, two steps, three steps etc.

Rate Determining Step

In a multi-step reaction, the **slowest** step is the ratedetermining step. It determines the rate of reaction.

Can only go as fast as your slowest step!

Average Rate

[Jump back to](#page-1-0) title slide

Average Rate

- Rate is not always constant!
- . Can start fast and slow down, or start slow and speed up
- Sometimes it is sufficient to just calculate the *gverage* rate over a given time period

$$
Average Rate = \frac{\Delta[X]}{\Delta t} = \frac{[X]_{final} - [X]_{initial}}{t_{final} - t_{initial}}
$$

Reaction Rates and Stoichiometry $N_2 + 3 H_2 \rightarrow 2 NH_3$

$$
\text{Rate} = \frac{|\Delta[\text{N}_2]}{\Delta t} = \frac{-1 \Delta[\text{H}_2]}{3 \Delta t} = \frac{1 \Delta[\text{NH}_3]}{2 \Delta t}
$$

Entire thing is the RATE EXPRESSION

REMEMBER!

Reactants are negative, Products are positive. Your double negatives will work themselves out so the REACTION rate comes out positive. Its all semantics in kinetics!

Rate Law

The rate law (really just an equation) expresses the mathematical relationship between the rate of a chemical reaction and the concentration of reactants

Rate Law

Jump back to title slide

Reaction Orders

BUT WHAT DOES THAT EVEN MEAN???

Rate = k [A Ω [B Ω] $aA + bB \rightarrow cC + dD$

Exponents in the rate law tell us:

- The "order" with respect to the concentration of that reactant
- The mathematical **effect** an individual reactant's concentration has on the overall rate – how much does a Δ [] affect the overall rate

How do we talk about it?

- The reaction is xth order with respect to A
- The reaction is yth order with respect to B ۰
- The reaction is $(x+y)$ th order overall

Rate Law

[Jump back to](#page-1-0) title slide

 $aA + bB \rightarrow cC + dD$ Rate = k [A]^x[B]^y

k is called the "rate constant"

- A numerical value that relates reaction rate and concentration of reactants at a given temperature
- Different for different reactions!
- Large value of k means the reaction proceeds quickly

What would small value for k indicate?

Jump back to title slide

Rate Laws

- Rate laws are always determined experimentally. ۰
- Reaction order is always defined in terms of reactant (not product) ۰ concentrations. $F_2(g) + 2Q1O_2(g) \longrightarrow 2FC1O_2(g)$

Exponents are NOT the coefficients from the overall balanced reaction!

They are coming from the rate determining step of the reaction!

rate = k [F₂][ClO₂ $\overline{)}$

Rate Laws

Coefficients from rate determining step are the exponents.

So...if only a SINGLE step reaction...the overall equation IS the rate determining step, then yes the coefficients are the exponents.

See how the coefficients don't match the exponents? That means that this must not have been a single step reaction!

$$
F_2(g) + 2Q1O_2(g) \longrightarrow 2FCIO_2(g)
$$

rate = k [F₂][CIO₂ Ω

Method of Initial Rates

Jump back to title slide

Practice Question #4 Determine the rate law **AND** calculate the rate constant for the following reaction from the following data: $S_2O_8^{2-}$ (ag) + 3l⁻ (ag) \rightarrow 2SO₄²⁻ (ag) + l₃⁻ (ag)

rate = k $[S_2O_8^2]$ ^x[l⁻]^y $x = 1$ $y = 1$

rate = k [S₂O₈²⁻][l -]

To solve for K, rearrange your rate law then plug in values!

Double [I⁻], rate doubles (experiment $1 \& 2$)

$$
k = \frac{\text{rate}}{[\text{S}_2\text{O}_8{}^2][\text{II}^2]} = \frac{2.2 \times 10^{4} \text{ M/s}}{(0.08 \text{ M})(0.034 \text{ M})}
$$

Double $[S_2O_8^2]$, rate doubles $(experiment 2 & 3)$

 $= 0.08/M_{\rm \bullet}s$

Careful with units for k! They depend on order!

Unit #13 Equilibrium

- •Le Chatelier's principle
- •Equilibrium constant
- •Equilibrium quotient
- •ICE Tables

[Jump back to](#page-1-0) title slide

WHAT IS A REVERSIBLE REACTION?

Some reactions can go forwards AND backwards

 N_2 (g) + 3H₂ (g) \rightarrow 2NH₃ (g) + 92.05 KJ **OR** $2NH_3(g) + 92.05 \text{ K} \rightarrow N_2(g) + 3H_2(g)$

Use a "double headed arrow" so you don't have to write it both ways! \leftrightarrow

[Jump back to](#page-1-0) title slide

REACTIONS WILL REACH "EQUILIBRIUM"

EQUILIBRIUM = the point at which the forward reaction is happening at the same \mathbf{RATE} as the reverse reaction

Are the CONCENTRATIONS of reactants and products the same?????

-NO!!!!! (well *maybe*, but it doesn't have to be! If they are the same then it is a coincidence!)

[Jump back to](#page-1-0) title slide

"FINDING" EQUILIBRIUM POINT

EQUILIBRIUM POINT We use ratios of [products] to [reactants]

You can have different ratios that all result in the rate forward being the same as the rate backwards! There isn't just one equilibrium point!

If you are pushed away from the original equilibrium point, then find a NEW ratio of concentrations that is "at equilibrium!"

[Jump back to](#page-1-0) title slide

LE CHATELIER'S PRINCIPLE

If a stress is applied to a reaction at equilibrium the reaction changes to relieve that stress, it will find a new equilibrium point where the forward and backwards reactions are equal again. It will try to "undo" whatever you did! -Took something away? Make more of it! -Added extra of something? Use some up!

STRANGE FACTS...

Jump back to title slide

• ONLY changes to aqueous and gas phases affect equilibrium

- Solids and liquids do NOT affect equilibrium!
	- They do not have "concentrations" so they can't factor in.
	- We will see this better when we get to the math portion of the chapter!
- Adding an Noble Gas, an INERT gas, does NOTHING because it doesn't change the PARTIAL PRESSURES of the gases involved!
- Adding a catalyst does NOTHING! You will reach equilibrium faster but it won't change the equilibrium point.

[Jump back to](#page-1-0) title slide

QUICK EXAMPLE

- N_2 + 3H₂ \leftrightarrow 2NH₃ + 92.05 KJ
- Add more N_2
	- Shift to the right, use up the extra by making more products!
- Remove H_2

- Shift to the left, replace what you took away by making more reactants!

[Jump back to](#page-1-0) title slide

[Jump back to](#page-1-0) title slide

WHAT ABOUT CHANGING PRESSURE?

- Increasing pressure causes molecules to be too crowded, too close together
- If you can reduce the number of moles of gas particles it will make things less crowded and relieve some of the pressure
	- Move to the side with fewer moles of gas!
- Reducing pressure?
	- -Move to the side with more moles to get the pressure back up!

Equilibrium Constant

[Jump back to](#page-1-0) title slide

PRODUCT OR REACTANT FAVORED?

Once equilibrium is reached, you may have more products present, or you may have more reactants present.

Equilibrium Constant

[Jump back to](#page-1-0) title slide

PRODUCT FAVORED OR REACTANT FAVORED?

 K_{eq} is a value (with no units) that allows us to determine if more products or reactants are being made. It is a ratio of products to reactants.

SIMPLIFIED VERSION FIRST: $K_{eq} = \frac{[Products]}{[Readucts]}$

- \cdot K > 1 then more products!
- \cdot K < 1 then more reactants!

Equilibrium Constant Jump back to

CALCULATING K_{eu}

• The "Law of Mass Action" will allow us to calculate K_{eq} – Ratio of Products over Reactants

$$
aA + bB \leftrightarrow cC + dL
$$

$$
K_{eq} = \frac{[C]^c[D]^d}{[A]^a[B]^b}
$$

Still simplified, there is an additional part that we wont use that helps "fix" the units so Keq can have no units. Don't worry about it!

* Remember how solids and liquids don't factor into equilibrium? They don't have true concentrations so there is nowhere to plug them into this equation is there!

Fauilibrium

PRACTICE PROBLEM:

• Write the equilibrium expression for the reaction:

$$
\mathbf{2NO}_{2(g)} \longleftrightarrow \mathbf{2NO}_{(g)} + \mathbf{O}_{2(g)}
$$

$$
K_{eq} = \frac{[C]^c[D]^d}{[A]^a[B]^b}
$$

$$
K_{eq} = \frac{[NO]^2 [O_2]^1}{[NO_2]^2}
$$

[Jump back to](#page-1-0) title slide

ASSUME FORWARD REACTION...BUT WHAT IF ASKED FOR BACKWARDS RXN?

• Just flip it! Write K as K' for backwards reaction. $2NO_{2(g)} \leftrightarrow 2NO_{(g)} + O_{2(g)}$

$$
K'_{eq} = \frac{[NO_2]^2}{[NO]^2[O_2]^1}
$$

$$
K'_{eq} = \frac{1}{K_{eq}}
$$

Don't even bother writing the equation flipped! Just flip your Law of Mass Action!

Constant

WHAT IF I HAVE PRESSURES NOT [] ?

· Just use partial pressures the same way you use concentrations!

$$
aA + bB \leftrightarrow cC + dD
$$

$$
K_{eq} = \frac{(PC)^c (PD)^d}{(PA)^a (PB)^b}
$$

Jump back to title slide

REMEMBER...

These things DON'T CHANGE Keq

- -Changing Concentrations
- -Changing Pressures
- -Adding Solids or Liquids
- -Adding Catalysts

These things DO CHANGE Keq

-Temperature

Equilibrium Constant

[Jump back to](#page-1-0) title slide

CAN IT CHANGE ANYTHING?

Equilibrium Quotient

[Jump back to](#page-1-0) title slide

HOW CAN YOU TELL IF IT IS AT EQUILIBRIUM OR NOT?

• Calculate the values you have, and compare them to the K_{eq} value

- Reaction Quotient is what it is called if it isn't at

equilibrium

$$
aA + bB \leftrightarrow cC + dD
$$

$$
Q = \frac{[C]^c[D]^d}{[A]^a[B]^b}
$$

[Jump back to](#page-1-0) title slide

SO WHAT DOES Q TELL YOU?

- \cdot K = Q then you are at equilibrium!
- . K < Q you have too many products!
	- SHIFT LEFT until you make enough reactants to get back to equilibrium
- \cdot K > Q you have too many reactants!
	- SHIFT RIGHT until you make enough product to get back to equilibrium

[Jump back to](#page-1-0) title slide

DETERMINING CONCENTRATIONS AT EQUILIBRIUM

What if you wanted to determine the concentrations of your reactants and products at equilibrium, but only know the initial concentrations?

[Jump back to](#page-1-0) title slide

٠

WHAT IS AN ICE TABLE?

• A strategy for organizing information about a reaction in order to solve for []'s at equilibrium

 $A + B \leftrightarrow C$

[Jump back to](#page-1-0) title slide

5% RULE

What is it?

• A way for us to simplify the math involved when solving ICE table problems.

When can I use it?

- When X is small enough to be considered negligible
- The change ends up being so small that it isn't even considered valid when you take significant figures into account so you might as well ignore it!

Jump back to title slide

5% RULE

What counts as "negligible?"

- \cdot Required: $K < I$
- When x ends up being 5% or less of the initial concentrations
	- Can't know that until the end when you solve for x! Ugh!
	- Good guestimate... if K is at least 1000x smaller that initial concentrations, you have a good chance of the 5% rule working

• You MUST check at the end to show that $\frac{x}{[initial]}$ x 100 \leq 5%

[Jump back to](#page-1-0) title slide

5% RULE EXAMPLE

Set up your ICE table as normal through the equilibrium row. 2 $NO_{2(g)} \rightarrow N_2O_{4(g)}$

[Jump back to](#page-1-0) title slide

5% RULE EXAMPLE

Now check to see that K is at least 1000x smaller than initial []'s $(K_{eq} = 9.3 \times 10^{-7} \text{ vs. 3})$ Yes it is!

Probably can use the 5% rule! Ignore any subtraction or addition of x values. Leave any x values that are by themselves alone!

5% RULE EXAMPLE

Now plug your 5% equilibrium values into the Equilibrium Expression and solve for x! Math is easier! Woohoo!

 $K_{eq} = [N_2O_4]$
 $[NO_2]^2$

$$
X = 8.37 \times 10^{-6}
$$

Plug your x value into your 5% row to find your final answers!

Unit #14 Acids and Bases

- •Acid Base concepts
- •pH calculations
- •Strong acids and bases
- •Self ionization of water
- •Weak acids and bases
- •Salts

•Titrations

Concepts

Jump back to title slide

THREE DIFFERENT DEFINITION OF ACIDS/BASES

Arrhenius

- Acids make H⁺ ions in aqueous solutions
- Bases make OH⁻ ions in solution

Bronsted-Lowry

- Acids donate protons
- **Bases accept** ď protons

Lewis

- Acids accept y, electron pairs
- **Bases donate** \mathbf{a} electron pairs

Concepts

Water can act as an acid or a base! $NH₃ + H(OH) \rightarrow NH₄ + OH₁$ Water is donating a proton... **ACID!** $HCl + H(OH) \rightarrow H_3O^+ + Cl^-$ Water is accepting a proton... **BASE!**

[Jump back to](#page-1-0) title slide

Concepts

pH Calcs.

Jump back to

title slide

They dissociate completely $HCI \rightarrow H^+ + Ct^-$

HCI is a strong acid so LOTS of jons in solution!

Strong Acids and Bases are the easy ones...assuming the dissociate completely makes our math easier ©

Strong Acids and Bases

Jump back to title slide

MEMORIZE! The Seven Strong Acids

- HCl Hydrochloric Acid 1)
- HBr Hydrobromic Acid 2)
- $3)$ HI - Hydriodic Acid
- H_2SO_4 Sulfuric Acid 4)
- $HNO₃ Nitric Acid$ 5)
- $HClO₄ Perchloric Acid$ $6)$
- $HClO₃ Chloric Acid$ 7)

[Jump back to](#page-1-0) title slide

Neutralization Reactions

What happens when you mix a strong acid and strong base?

Acid + Base \rightarrow Water + Ionic Salt

 $HCl + NaOH \rightarrow H₂O + NaCl$ H_2SO_4 + 2KOH \rightarrow 2H₂O + K₂SO₄

Self lonization of Water

Self Ionization of Water

[Jump back to](#page-1-0) title slide

What is the equilibrium expression for water? $H_2O_{(l)} + H_2O_{(l)} \leftrightarrow H_3O_{(aq)}^+ + OH_{(aq)}^ K_w = [H_3O^+][OH^-]$

Remember!

Pure liquids aren't included in equilibrium expressions!

 $[H_3O^+]$ and [OH \cdot] are <u>both</u> equal to **NOTICE** $1.0x10^{-7}$ M at 25^oC. **ANYTHING???** $K_w = [H_3O^+]$ [OH-] $1.0x10^{-14} = [1.0x10^{-7}] \times [1.0x10^{-7}]$

Self lonization of Water

 $K_w = [H_3O^+]$ [OH-] $1.0 \times 10^{-14} = [1.0 \times 10^{-7}] \times [1.0 \times 10^{-7}]$

The concentration of $[H_3O^+]$ and [OH \cdot] are equal... So it is neutral!

Also - The pH and the pOH of any aqueous solution are related through the K_{w} . That's why if you know one you can find the other! And why they add to 14... look at the exponents!

Weak Acids and Bases

What do chemists mean by WEAK? The do not completely ionize in water. Only a **LITTLE BIT** will be dissociated.

We can use equilibrium constants, expressions, ice tables to determine []'s which let us find...

 $So...$

pH values!

Weak Acids and Bases

Remember that Keq is just generic.

Ka and Kb

title slide

[Jump back to](#page-1-0) Could be Kc, Kp, Ksp if you are trying to be specific. So for acid bases use:

- K_a (for acids)
- K_b (for bases)

Still $\frac{Products}{2}$ which will be Reactants [Dissociated Ions] [Undissociated Molecule]

 $HA \leftrightarrow H^+ + A^ BOH \leftrightarrow B^* + OH^-$ **Weak Acids** and Bases **Jump back to**

title slide

Size of Ka for Weak Acids

$$
Ka = \frac{[H_3O^+][OAC^-]}{[HOAC]} = 1.8 \times 10^{-5}
$$

Why is the Ka so small for acetic acid???

- Small Ka means equilibrium lies to the LEFT $\overline{}$
- Reactant Favored not much dissociated
- It is a WEAK acid!
- Weak acids have Ka < 1
	- Leads to low [H⁺] \rightarrow pH from 2 6.9 ۰

$$
\textit{K}_{b}=\frac{\left[BH^{+}\right] \lbrack OH^{-}\rbrack}{\left[B\right] }
$$

 $B(aq) + H_2O(\ell) \implies BH^+(aq) + OH^-(aq)$

Weak Bases have small Kb values

- Small Kb means equilibrium lies to the LEFT
- Reactant Favored not much dissociated
- It is a WEAK base!
- Weak bases have $Kb < 1$
	- Leads to low [OH] \rightarrow pH from 12 7.1

Weak Acids and Bases

You have 1.00 M HOAc. Calc. the equilibrium concentrations of HOAc, H_3O^* , OAc, and the pH if Ka = 1.8x10⁻⁵. HOAc + $H_2O \leftrightarrow H_3O$ + OAc

[Jump back to](#page-1-0) title slide

Now Solve for pH - Don't forget!!!

$$
pH = -\log [H_3O^+]
$$

$$
pH = -\log (4.2 \times 10^{-3})
$$

$$
pH = 2.37
$$

$$
Ka = \frac{[H_3O^+][OAc^-]}{[HOAc]}
$$
 1.8 x 10⁻⁵ = $\frac{x^2}{1.00}$

 $x = 4.2 \times 10^{-3}$

They dissociate – the ions separate

 $NaCl \rightarrow Na^+ + Cl^ NH_4Cl \rightarrow NH_4^+ + Cl^-$

The ions can sometimes "hydrolyze" Meaning they can react with the water. NH_a ⁺ + H₂O \rightarrow NH₃ + H₃O⁺

The ion has to be "strong" enough for this to happen (we will explain which ions are strong in a minute!)

Salts

WHAT IS THE RESULT OF THIS (POTENTIAL) HYDROLYSIS?

Once the ion hydrolyzes with the water it can make the salt solution acidic, basic, or neutral

 $NH₄⁺ + H₂O \rightarrow NH₃ + H₃O⁺$ $CO₃²⁻ + H₂O \rightarrow HCO₃⁻ + OH⁻$ $Cl⁺ + H₂O \rightarrow Cl⁺ + H₂O$

solution is ACIDIC solution is BASIC CI- is not strong enough to hydrolyze so solution **is NEUTRAL**

Have to think about the properties of the acids/bases that the ion came from

Salts

[Jump back to](#page-1-0) title slide

If you want Ka of an ion \rightarrow need Kb of the base it came from If you want Kb of an ion \rightarrow need Ka of the acid it came from

Practice Problem: What is the Ka of NH₄+?

Use Kb of $NH_3(1.8 \times 10^{-5})$ plug in and solve for Ka_{lion} (1×10^{-14}) = Ka_(ion) x (1.8 x 10⁻⁵) Ka_{fion} NH₄⁺ = 5.56 x 10⁻¹⁰

Salts

[Jump back to](#page-1-0) title slide

Is K_2CO_3 an acidic, basic, or neutral salt?

 K^+ CO_3^2

K^+ \rightarrow KOH strong Base \rightarrow so K⁺ is Weak acid \rightarrow No Hydrolysis \rightarrow Neutral effect

 $CO₃²⁻ \rightarrow H₂CO₃$ Weak Acid \rightarrow so $CO₃²⁻$ is Strong Base \rightarrow Hydrolysis \rightarrow Basic effect

Jump back to title slide

Salts

Is NH₄CN an acidic, basic, or neutral salt?

 NH_A^+ \rightarrow NH₃ Weak Base \rightarrow so NH₄⁺ is Strong acid \rightarrow Hydrolysis \rightarrow Acidic effect CN-→HCN Weak Acid→ so CN- is Strong Base→ Hydrolysis→ Basic effect

Kb NH₃ = 1.8 x 10⁻⁵ \longrightarrow Ka NH₄⁺ = (1.0 x 10⁻¹⁴)/(1.8 x 10⁻⁵) Ka HCN = 4.9 x 10⁻¹⁰ ___ Kb CN = $(1.0 \times 10^{-14})/(4.9 \times 10^{-10})$

 $Ka_{(NH4+)}$ < $Kb_{(CN-)}$ Ka $_{(NH4+)}$ = 5.56 x 10⁻¹⁰ Kb $_{(CN-)}$ = 2.04 x 10⁻⁵ **NH₄CN** is a Basic Salt!

Salts

WHAT IF YOU WANT THE ACTUAL pH VALUE?

- Do all the steps needed to determine which ion is the 1. "strong" one – which one is being hydrolyzed?
- Write the hydrolysis reaction for that ion (or ions) $2.$
- ICE Table time! Yes! More ICE tables! They just wont go 3. away! © Use your hydrolysis rxn for ICE Table
- Find $[H_3O^+]$ or $[OH^-]$ from ICE Tables 4.
- Continue on with normal pH type calculations 5.
Titrations

[Jump back to](#page-1-0) title slide

What is titration?

- A way to determine the concentration of an unknown substance.
	- Uses the fact that acids and bases react with each other in "neutralization" reactions"
	- At the point where the neutralization reaction is finished # moles Acid = # moles Base

Jump back to title slide

How do you know you reached the end point?

Use an INDICATOR

Turns colors based on pH – can show you visually when you have reached the end point.

Titrand The unknown solution you are interested in

Titrant

The solution with the known concentration

Equivalence Point

The point at which all the titrand has reacted with the titrant. # Moles Acid = # Moles Base

End Point

The point at which your titration seems finished during the lab - a color change happens for example

Titrations

[Jump back to](#page-1-0) title slide

Titrations

[Jump back to](#page-1-0) title slide

SO... Known [base] & unknown [acid]

Unit #15 Redox (part of Summer Assignment always)

- •Oxidation and Reduction
- •Oxidation number
- •Oxidation vs reduction
- •Writing half reactions

•Balancing redox reactions in an acidic or basic solution

Oxidation and Reduction

[Jump back to](#page-1-0) title slide

Electrochemistry

Study of the interchange of chemical and electrical energy

• Electron transfer reactions are called oxidation-reduction reactions or REDOX reactions

• Electrochemical processes that result in the generation of an electric current (electricity) or can be caused by imposing an electric current

Oxidation and **Reduction**

Jump back to

title slide

Redox Reactions

- OXIDATION NUMBER: Assigned charge on an atom
- OXIDATION: Loss of electrons (increase in oxidation number or charge... "+")
	- REDUCTION: Gain of electrons (decrease in oxidation number or charge... "-")

- OXIDIZING AGENT: electron acceptor... species that is reduced (an agents facilitates something / ex: travel agent)
- REDUCING AGENT: electron donor... species that is oxidized

LEO THE LION GOES GER!

OIL RIG!

Half Reactions

[Jump back to](#page-1-0) title slide

· Oxidation and reduction go hand in hand... need one to have the other

- Cannot have 2 oxidations or 2 reductions in the same equation
- Written as two HALF-REACTIONS (one for oxidation and one for reduction)

2 Mg(s) + $O_2(g)$ \rightarrow 2 MgO(s) Overall

2 Mg \rightarrow 2 Mg²⁺ + 4 e- OXIDATION

 $\mathbf{O}_2 + \mathbf{4} \mathbf{e}_1 \rightarrow 2 \mathbf{O}^2$ REDUCTION

Oxidation **Numbers**

Jump back to title slide

Oxidation Numbers

Assigned charge on an atom

1) Elements not bonded to another different element have an oxidation number of ZERO $(ex: Na, Fe, O₂, N₂)$

2) In monatomic ions, oxidation number is equal to the charge on the ion $(ex: Li^+ = +1, Fe^{3+} = +3, P^{3-} = -3)$

3) Oxidation number of oxygen is USUALLY -2... in H_2O_2 and $O_2²$ it is -1

4) Oxidation number of hydrogen is +1 EXCEPT when bonded to metals in binary compounds then it is -1 $(ex: CaH₂, LiH)$

5) Group IA metals are always +1, IIA always +2, etc... remember transition metals vary

6) Oxidation numbers of a molecule must add up to ZERO or add up to the charge on a polyatomic ion

$Ex: HCO₃$

Oxidation Numbers

[Jump back to](#page-1-0) title slide

Examples

 $CO₂ CO C CH₄ H₂ Cl₂ HCl$ $(+4)(-2) (+2)(-2) (0) (-4)(+1)$ (0) (0) $(+1)(-1)$ KMnO₄ ZnO CaF₂ **NaCl** $(+1)(-1)$ $(+1)(+7)(-2)$ $(+2)(-2)$ $(+2)(-1)$

 O_2 O_3 HO_2 H_2O_2 H_2O OF_2 (0) (0) $(+1)(-1/2)$ $(+1)(-1)$ $(+1)(-2)$ $(+2)(-1)$

Half Reactions, Balancing

Jump back to title slide

Writing a Redox Reaction

- 1) Write the NET IONIC equation
- 2) Assign oxidation numbers
- 3) Determine what is being oxidized and reduced
- **EXAMPLE:** Lead foil is immersed in silver nitrate

 $Pb(s) + 2 Ag'(aq) \rightarrow Pb^{2}(aq) + 2 Ag(s)$ \bf{o} $+1$ $+2$ o

Balancing a Redox Reaction

1) Write the half reactions

2) Balance the non H's and O's first

3) Use H_2O to balance the O's and use H^+ to balance the H's

- 4) Use e- to balance the charges
- 5) Get common multiple for e- and multiply

6) Cancel and add up the half reactions (emust cancel as well as all like species)... Verify # of atoms and charges are balanced

7) In basic solutions, add OH to BOTH sides for every H⁺ in final equation... make H₂O

STEP #3

Electro chem

Electro chem